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Abstract

In this paper, a micromechanical investigation for the evaluation of the overall response of the masonry material
reinforced by innovative composite materials is developed. The masonry is regarded as a heterogeneous medium re-
alized by a regular arrangement of blocks into a matrix of mortar. A homogenization procedure is developed for a one-
dimensional reinforced masonry problem, considering the progressive damage and plasticity of the mortar and the
block. Moreover, the brittle failure of the fiber reinforced plastic reinforcement is accounted for. The delamination
effect of the composite sheets from the masonry element is also modeled. A numerical procedure, based on the arc-
length method with a backward-Euler integration of the evolutive equations, is developed to study the behavior of the
reinforced masonry. Numerical applications regarding the axial and the bending response of the material are pre-
sented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Masonry structures represent the largest part of the construction heritage in the world. In fact, mon-
uments and historic buildings and also many houses, bridges and simple constructions are realized in
masonry material.

From a structural viewpoint, the masonry material is characterized by a very low tensile strength; thus,
even reduced values of the tensile stresses can induce crack initiation and hence damage of the material.
Because of the limited tensile strength, masonry constructions often present diffuse fracture patterns.
Moreover, masonry bearing and shear walls have been found to be vulnerable to earthquakes.

The ability to perform satisfactory stress analyses of masonry structures and to design appropriate re-
inforcements has been and is, even nowadays, an important problem for engineers. The stress analyses
should provide information about the safety of the structure; in fact, the presence of fractures in a masonry
structure can be pathological or physiological, and hence it could or could not require strengthening. On
the other hand, because of the difficulty in performing accurate stress analyses, technicians often prefer to
reinforce masonry structures even when it is not strictly necessary.
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Two different approaches have been developed in the literature in order to analyze the behavior of
masonry structures: the discrete and the continuous models. The first kind of models are used to study
monumental structures made of big superimposed blocks. Within these models, the blocks are usually
schematized as linear elastic while the behavior of the interfaces is modeled by the unilateral Coulomb
friction law (Yim et al., 1990; Grimaldi et al., 1992). On the other hand, several continuous models have
been proposed for the masonry, based either on phenomenological or on micromechanical laws. As an
example, the ‘no-tension’ model considers the masonry as a homogeneous elastic material which cannot
support tensile stresses (Heyman, 1966; Giaquinta and Giusti, 1985; Romano and Sacco, 1987). The mi-
cromechanical approach allows one to derive the masonry response, modeling the masonry as a hetero-
geneous material, often with periodic microstructure, realized by bricks in a matrix of mortar (Pande et al.,
1989; Kralj et al., 1991; Pietruszczak and Niu, 1992; Anthoine, 1995; Luciano and Sacco, 1995, 1997,
Gambarotta and Lagomarsino, 1997a,b).

From a technological point of view, the strengthening of masonry structures has been accomplished
adopting standard materials, mainly cement, concrete and steel, sometimes with the aim of changing the
statics of the structure. Simplified stress analyses and strengthening procedures are suggested in specialized
literature. In the past, new reinforcement approaches are rising; they are based on the idea that the
strengthening should be light and removable and, if possible, it should not change the structural scheme of
the construction.

Composite materials appear to be good candidates to substitute standard materials, since they are light,
very simple to install and are also removable. Moreover, composite materials are characterized by high
strength, good resistance to corrosion, durability and reduced installation and maintenance costs. As a
matter of fact, composite materials have been successfully used in several fields of structural civil engi-
neering (Neale and Labossicre, 1992; El-Badry, 1996), mainly for strengthening concrete and wood
structures (Nanni, 1993; Meier, 1987).

Thus, one promising technique to improve the overall strength of masonry structures and to reduce their
seismic vulnerability is to retrofit the masonry walls using fiber reinforced plastic (FRP). This system
consists of glass, carbon or aramidic fiber fabric combined with special epoxies to create a high strength,
lightweight structural laminate. FRP reinforcements can be designed to work in conjunction with existing
walls to increase both the in-plane and out-of-plane strength of the unreinforced masonry walls. Tri-
antafillou and Fardis (1993, 1995) and Triantafillou (1996) studied the applications of advanced composites
for strengthening historical masonry structures. The behavior of walls, reinforced by carbon fiber sheets or
conventional woven fabric bonded on the masonry surfaces, have been investigated with experimental tests
by Schwegler (1994). Luciano and Sacco (1996, 1998) proposed a simple model for studying the behavior of
masonry panels reinforced by FRP sheets.

Recently, applications of advanced composites are successfully adopted to restore masonry structures. In
particular, several masonry structures damaged by the last earthquake in Umbria (Italy) have been rein-
forced using composite materials. This fact emphasizes the increasing interest in the use of FRP for the
reinforcement of existing masonry, and the need to develop satisfactory structural analyses. It can be
pointed out that appropriate models and computational procedure able to predict the response of rein-
forced masonry are lacking.

In order to fill the gap between the technological interest and the development of appropriate design
suggestions, this paper is aimed at investigating the overall behavior of the masonry reinforced by means of
FRP composite materials. In particular, a one-dimensional micromechanical analysis is developed to
evaluate the overall mechanical response, adopting a nonlinear homogenization technique.

Although one-dimensional beam models could appear too simple and may be limited, they allow us to
study the behavior of several masonry structural elements. In fact, arcs and architraves are typical examples
of one-dimensional elements. On the other hand, beam models can be successfully used to study the out-of-
plane bending behavior of masonry walls or the response of vaults reinforced by circumferential chains.
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The model proposed in this paper accounts for damage in tension and damage and plasticity in com-
pression for the block and the mortar. The reinforcement brittle failure is also considered. Moreover, the
delamination process of the FRP from the masonry is studied by means of the Griffith energetic criterion.
Furthermore, a numerical procedure, based on the arc-length technique with an appropriate choice of the
control parameters, is developed. Some numerical applications regarding the study of the axial and the
bending response of the reinforced masonry under different loading histories are presented. The beneficial
effect of FRP reinforcement on the masonry behavior is emphasized.

The paper is organized as follows: first, the reinforced masonry model is proposed, introducing the
damage-plastic constitutive laws for the block and the mortar. Moreover, the brittle behavior of the FRP
is taken into account and an evolutive criterion for the delamination is considered. Then, the numerical
procedure and the proposed algorithm are described. Finally, some numerical results are presented.

2. Masonry and reinforcement modeling

In order to study the behavior of the reinforced masonry, a micromechanical analysis is performed. The
aim of this approach is to investigate the effects of the damage of different components of the reinforced
masonry, on the overall response of the material. In fact, the behavior of the masonry is influenced by the
damage of the mortar, the damage of the blocks, the delamination of the composite from the masonry and
the failure of the reinforcement.

In the masonry arrangement, vertical and horizontal thin layers of mortar are present. Because of the
reduced thickness, the mortar can be modeled in the masonry by a continuous as well as by a special in-
terface material joining the blocks.

The attention is focussed on the study of a one-dimensional masonry element, as shown in Fig. 1. It
consists in a beam obtained as a repetitive sequence of blocks and mortar. Moreover, FRP sheets are
partially glued on the top and bottom of the beam. In Fig. 2, the unit cell representing one-half of the
repetitive microstructure is reported; the total length of the unit cell is L = Ly, + Ly, where Ly, and L,, denote
the block and mortar halflengths.

The reinforced masonry can be regarded as obtained superimposing two different elements: the masonry
and the reinforcement. The first one has constant rectangular cross-section 4y = b x h. The second one is
defined by the reinforcements on the top and the bottom of the masonry, which are characterized by the
areas Ay and Ag, respectively. With reference to Fig. 2, it is assumed that the reinforcement is in perfect
adhesion on the block for a length equal to L, and it is completely unglued in the zone corresponding to the
mortar, characterized by the length L, = L — L,.

With the aim of deriving the overall response for the defined unit cell in terms of resultant axial force and
bending moment as function of the average axial strain and curvature, one-dimensional continuous stress—
strain relations for the mortar and the block are introduced and a FRP damage mechanism is considered.

..........

FRP

Fig. 1. Heterogeneous reinforced masonry beam.
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Fig. 2. Unit cell obtained from the periodicity and symmetry of the masonry.

2.1. Mortar and block

A simple one-dimensional constitutive relation is chosen both for the mortar and the block. It is
characterized by a damage response in traction and damage-plasticity law in compression. In particular, the
constitutive equation is (Lemaitre and Chaboche, 1990)

o= (1 —D)E(e — &), (1)

where D is the damage parameter and ¢, is the plastic strain, so that ¢ — ¢, = & represents the elastic strain.
The Young’s modulus E of the block and mortar are denoted as Ey, and E,,, respectively.

2.1.1. Damage
A damage evolution law, inducing a linear softening in the stress—strain relationship, is assumed:
0 for eq < &F,
: e g + +
0<D= WS for e < e < ey, (2)
Eot)e
0 for &7 < &g,

where ¢ and ¢ are the elastic strains corresponding to the undamaged and completely damaged material,
respectively. The superscript + is + in traction and — in compression. The governing evolution parameter
&4 1s set in a different way in traction and in compression. In fact, it is assumed that the damage in traction
depends on the elastic stress, i.e. &g = &, while in compression it depends on the total strain, i.e. &g = ¢. For
a monotonic strain history, the evolutive equation (2) can be integrated, thus it takes the form:

0 for &g < &7,
(62 —¢a)en + +

D= E=a for e < &g <&, (3)
1 for &7 < &q.

The choice of assuming the damage in traction depending on the elastic strain allows one to limit the
tensile stress within a prescribed value, for any plastic history, as schematically represented in Fig. 3. In
fact, in Fig. 3, the stress—strain laws corresponding to three different strain paths are reported: path 1
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Fig. 3. Stress—strain for three possible strain paths.

considers a monotonic positive strain history, while paths 2 and 3 are referred to non monotonic negative
strain histories.

2.1.2. Plasticity

Traction:

The mortar and block response in traction, i.e. for ¢ > 0, can be considered as purely cohesive, without
any plastic effect. Thus, the plastic strain rate is set to be zero:

&, =0 forg>0 (4)

Compression:
The mortar and block response in compression, i.e. for ¢ < 0, presents a damage-plastic behavior. In-
troducing the effective stress ¢ as

[

0= 1-D’ (5
the following yield function with hardening is considered
f(6,0) = =6 — (oy + Kor), (6)

where o is the internal hardening variable, and K is the plastic hardening parameter. The evolutive equa-
tions are

%:i%:fa (7)

6 = |ép| = —ép, (8)
and the Kuhn-Tucker conditions result in

<0 <0 &,/ =0. 9)

The consistence law épf = ( allows one to determine

_E
T E+4K

¢ for f=0 with ¢ <0. (10)

ép
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2.2. Composite

The composite material behavior is characterized by a linear elastic response with quite brittle failure.
Several different strength criteria have been proposed in the literature, as reported for instance by Barbero
(1999).

In the present work, the composite is considered as a linear elastic material with Young’s modulus E,
until a brittle failure, i.e., the composite is assumed to collapse suddenly when the tensile or the compressive
stress reaches a threshold stress fi in tension or fy in compression.

Moreover, the degradation is allowed also at the masonry—composite interface. The delamination of the
composite sheet from the masonry element can be considered as brittle and mainly due to the shear fracture
(i.e. mode II fracture) of the masonry, rather than to the damage of the glue.

It is assumed that at the virgin state, the adhesion between the laminate and the mortar is negligible, and
thus, the FRP is perfectly glued only to the block. Hence, it is considered the presence of an initial defect of
adhesion in correspondence of the mortar. The fracture propagation is ruled by the classical Griffith cri-
terion, setting the critical release rate energy G. as the one associate to the fracture mode II of the block
material (Bazant and Planas, 1998).

Since the fracture evolution is coupled with the damage and plasticity, the energy release rate, for an
infinitesimal delamination process inducing a variation dZ, of the unglued length, is given by

GbOL, = W — 86 — 3® — 5%, (11)

where 6 is the external work performed during the process, 66 is the elastic energy variation, 3@ and %W
are energies dissipated for the plasticity and damage effects, respectively. Finally, delamination occurs when
the energy release rate is equal to the critical energy G, i.e. when

G =G.. (12)

3. Reinforced masonry beam

The overall behavior of the reinforced masonry beam reported in Fig. 1 is derived developing a kine-
matical model which considers both elongation and bending deformations.

Let (x,y,{) be a Cartesian coordinate system such that { lies on the center-line axis of the undeformed
beam, as reported in Fig. 2. The kinematics of the cross-section is defined by the elongation e and the
curvature y, such that the strain at a typical point of the beam is ¢ = e + yy.

In order to evaluate the overall behavior of the reinforced masonry beam, the unit cell is considered
subjected to an axial force N, and to a bending moment M;.,. Simple kinematic observations allow us to
deduce that the elongation and the curvature solution of the equilibrium problem both for the masonry and
the reinforcement beams are piecewise constant. In fact, the block elongation and curvature are denoted by
ey and y, in the glued zone and by e, and y, in the unglued zone, while the mortar elongation and curvature
are set as ey, and y,,. Analogously, the glued reinforcement elongation and curvature are e, and y, while the
unglued reinforcement elongation and curvature are ¢, and y,. Summarizing, the elongations and curva-
tures are

0<{<L, Ly <{ <Ly Ly <{<L
Masonry €l eb X €mXm
Reinforcement Cale ey €ully

Note that the unglued reinforcement elongation and curvature e, and y, can be evaluated as
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€u = 1,€p + Mm€m,

(13)
Xu = Mo Xb + M Xms
where 1, = (L, — Lg) /Ly and 1, = Ly, /L.
The reinforced masonry elongation e, and curvature y,, are determined as
o [eng + ey (Lb — Lg)] + enlm _eglg +eyly
tot — - 9
L L (14)
[Xng + Xb (Lb - Lg)] + XmLm Xng + XuLU
Liot = I = I .
The resultants in the masonry beam, i.e. in the glued and unglued block and in the mortar, are
Nfiv[ (eg7xg) = / Gg(eg7xg) d4, Mévl (egvxg) = / yog(eg, Xg) d4,
Am Am
Nb(ebaxb) = / ab(ebaxb)dAa Mb(ebaxb) = / yab(ebaxb)dAa (15)
Am Am
N (em, fm) = / Om(€m; Lm) d4, My (em, fm) = / yam(em,Xm)dA'
Am Am
while the resultants in the glued and unglued parts of the composite reinforcement are
R _ R _ .
N; = Aeg + By, M, = Be, + Dy,, (16)
N, = Ae, + By, M, = Be, + Dy,
where
+ - ho - n + -
A= Ag + 4y, BZE(AR*AR)’ D:Z(ARJFAR)- (17)
Taking into account relations (13), the second expression in Eq. (16) can be rewritten as
Nu =4 (1pes + Nmem) + B (o) + M) (18)

My = B (nyes + Mmem) + D (1o + Minm)-
The total resultant axial forces and the bending moments in the three parts of the reinforced masonry,
represented in Fig. 2, are obtained as
M R M R
N =NM+ N8 My =M+ MY,
N> = Ny + Ny, M, = My + M,, (19)
N; =N, +Nu7 My = My + M,.

Finally, as the axial force and the bending moment are constant along the whole beam, the six equi-
librium equations are

Ny = Nt0t7 M, = Mtota
N, = Ntou M, = Mlot7 (20)
N3 = ]vtola M3 = Mt0t~

Regarding the delamination problem, the energy release rate G is evaluated from formula (11). The
external work dW is determined as
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S = (Neoderor + Miotdse) L = (SWgM + 8, + 1 + SR + SWu), (21)

where because of the virtual displacement theorem, it is

S = /agSggdA}Lg,
L JAm

SVVb = / O'bSdeA:| (Lb —Lg),
Am

Wy, = /om8£mdA]Lm,
Am

R R R
W = (Ng deg + M, 61g>Lg,

dW, = (N,dey + M0y, )Ly.

The elastic energy variation & is computed as the sum of the energies stored in the block, in the mortar
and in the reinforcement as follows:

86 = 5(6) + &4+ bm + 6+ 64), (23)

where

édf:[ = %/ Og (Sg - spg) dA} Lg,
1" Jay

o Y T
Am

3 (24)
Em = %/ Om (&m — &pm) dA}Lm7
N
68 = H(VReg + My, ) e,
Eu = L(Nyey + My )Ly
The dissipation due to plasticity and damage is given by
50 + 5% = (DY + 5By + 50y ) + (SVN + 8%, + 8%y ), (25)

where

1
S = [/A ag68pgdA]Lg, s = [E/A g (e — 8pg)5ngA}Lg,

1
3Py, = [/ ab&spbdA] (Lo — Ly), 8% = [E / b (e — &pb) Dy dA} (Ly — Ly),
Am Am

0P, = {/ amﬁgpmdA]Lm, oV, = {%/ am(sm — spm)SDmdA]Lm.
Am Am

Finally, the delamination is governed by Eq. (12).

Because of the damage, the plasticity, the brittle failure of the reinforcement and the possible delam-
ination of the composite from the masonry, the solution of Eq. (20) is not straightforward. Thus, analytical
solutions are possible only in few very special and simple cases. In general, the overall stress—strain
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(Neoty Miot) — (€rot, Yior) Telationships can be computed numerically, and thus a computational procedure is
proposed in the following.

4. Computational procedure
4.1. Damage and plasticity

The nonlinear relations between the kinematic parameters and the stress resultants are solved developing
a numerical procedure. To this end, initially the expressions in Eq. (20) are written in the equivalent residual
form:

Rl :Nl_Nlot:NgI\4+N§_Ntot:Oa
RZZMI_Mmt:Mg/I‘i‘M:_Mtot:Oy
R3:N2_Ntot:Nb+Nu_]vlol:07

(26)
Ry =M, — Moy = My + My — Moy = 0,
Rs = N3 — Nyt = Ny + Ny — Nyt = 0:
R = M3 — My = My + M, — My = 0.
Introducing the residual vector R and the deformation vector e as
Rl €g
sl
R = 3 , e— € ,
Ry b
R5 €m
R() Xm
the expressions in Eq. (26) can be rewritten in compact form as
R(e) = 0. (27)
In the following, Eq. (27) is solved using a Newton algorithm (Luenberger, 1973):
R(e“"") = R(e") + K, (e"' —¢), (28)
where the superscripts k£ and k + 1 indicate the iteration indices and the tangent matrix is
oR
K= — . 29
‘= e | (29)

Given the kth solution, i.e. e, Eq. (28) can be solved in terms of ¢*!'. The derivative of the residuals is the
tangent operator of the equilibrium problem (27), and it is explicitly expressed as

A+A4, B+B, 0 0 0 0
B+B, D+D, 0 0 0 0
K — 0 0 Ay, + An, By + Bny, An,, B, (30)
' 0 0  By+Bny, Dy+Dn,  Bny, Dny, |’
0 0 Any, Bn, Any, + Am By, + B
0 0 Bnb Drlb Bnm+Bm Dnm+Dm

where
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oNy! oo,
¢ aeg Ay aeg
oN,! oMM
8= g=/% g=/y%dA, (31)
an Am an aeg Aum 6eg
D, = oM _ / oo,
an Am an
GNb aGb
A, =—= 70
b @eb /AM Geb dA’
ONy / Oay, aMb / Ooyp
== ) o 2. W kY)
° Otp iyt O @eb AMyaeb (32)
0o v b
60’m
An aem aem
B _ 6‘]vm _ aO—m aM aam 33
" O Juy O Oem dem (33)
D, @M aam
@,fm

It can be noted that the tangent matrix is not symmetric. This fact is due to the particular choice of the
equilibrium equations that are not conjugate to the kinematic parameters considered. As the number of
degrees of freedom is very low (it is equal to six), the lack of symmetry of K, does not generate any nu-
merical burden.

The computation of R and of its derivatives requires

e the time integration of the local constitutive equations,
o the determination of the algorithmically tangent moduli,
o the evaluation of the integrals over the cross-section A4y;.

The time integration of Eqs. (2)—(10) in the interval [z,,,,] is performed adopting a backward-Euler
scheme (Simo and Hughes, 1998). To simplify the notation, the subscript “n”” indicates a quantity evaluated
at time ¢, while no subscript indicates a quantity evaluated at time ¢, ;.

4.1.1. Damage
Once the evolution parameter ¢4 is given, the damage variable is computed, according to the formula
0 for &4 < &,
D = { max (Dm ((gzji))ﬂi) for & < g9 < &F, (34)
1 for &f < &q.

4.1.2. Plasticity

The time discrete model is solved using a return map algorithm, as described in Simo and Hughes (1998).
It is set as
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ny1
A= / épdt =&, — &pp. (35)
tn

Then, the algorithm consists of two steps, i.e. the predictor and corrector phases, which are schematically
reported:
Predictor phase:
¢ =E(e— &)
8; = &pu
o =,
J'==6"—(oy+ Ko
Corrector phase:
If /" <0 elastic step

v — ol
& = &,
o=o
=27

Elseif f* > 0 plastic step
i=—["/E+K) (f=0)

&y = Epu + A

oo=0, — A

=0 —EA
Endif

4.1.3. Algorithmic tangent
Because of Eq. (5), it results that

o= (1-D)o.

Thus, the algorithmically tangent moduli 0¢/0e and 00/0y are computed as

d0 00 0¢ Qo 0D 0c _0D
% 5oetapoe U Da T Er a6
8 G007 00D 0 0D
3y 05 0y oD oy oy oy UET
where
EK _ ¢
ET_(I_D)E+K_G(£§—8§)8§' (37)
A tangent-secant modulus can be introduced by setting
EK
Er=(1-D)——
T=( e+ K (38)

that can be regarded as tangent with respect to the plasticity equations and as secant with respect to the
damage evolution.

The substitution of tangent modulus (37) or tangent—secant modulus (38) into Egs. (31)—(33) returns the
explicit form for the quantities 4., B, and D,, where the subscript “«’ stands for ‘g’, ‘b’ or ‘m”:



4188 S. Marfia, E. Sacco | International Journal of Solids and Structures 38 (2001) 4177-4198

m:/5m4&:/wm4m:/ﬁ&m. (39)
Am Am Am

Finally, the integration over the cross-section to determine the residuals R and its derivatives is per-
formed by discretizing the cross-section in stripes and applying the Gauss integration formula within each
stripe.

4.2. Delamination

As described in the previous sections, it is assumed that adhesion between the masonry and the rein-
forcement is present only in the glued part of the reinforced masonry beam having length L,, while the
unglued part has length L,. Delamination effect is accounted for considering the variation of the size L,
during the loading history.

The procedure proposed for evaluating the delamination effect is based on the Griffith criterion, through
a discretization of the evolutive equation (12) according to a finite difference scheme, in the framework of
the virtual crack method. Hence, at each time step the algorithm consists of the following scheme:

1. Let L, be the actual delaminated size.

2. Set Lu] = Lu.

3. Compute the response of the reinforced masonry beam, for the assigned value of L,;:
Compute the (Nyor, Miot); — (€tots Xior); relationship.
Compute the elastic energy &.

4 If Ly < L, set Ly, = Ly + AL.

5. Compute the response of the reinforced masonry beam, for the assigned value of Ly;:
Compute the (Mo, Miot), — (€tots Xio1), relationship.
Compute the elastic energy &.

6. Compute the finite variation of the external work AW (Eq. (21)) and of the dissipation A® + A¥ (Eq.
(25)).

7. Evaluate the clastic energy rate as finite difference
AS = 8, — 6. (40)

8. Determine the energy release rate G as
GbAL = AW — A6 — Ad — AVY. (41)

9. If G < G, there is not delamination, thus the delaminated size is L,; and the overall reinforced masonry
response is given by the relationship (N, Miot); — (€tot; Xior);- If G = G, delamination occurs, thus the
delaminated size is L,, and the overall reinforced masonry response is given by the relationship
(]vtol;Mtol)z - (elotv Xtot)Z'

4.3. Control parameters

The softening behavior of the mortar and block can induce an overall response of the reinforced ma-
sonry characterized by steep softening branches and possibly also by snapbacks. In particular, strain and
damage concentration occurs first in the mortar, since it is generally the weakest component of the ma-
sonry, than in the block. Hence, it appears convenient to adopt an arc-length method to catch the overall
material response. Hence, the cylindrical as well as the linearized arc-length methods (Crisfield, 1991) with
local control are developed for the particular problem under consideration. Some investigations have been
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performed in order to individuate the most convenient strain parameters to control within the arc-length
technique. Finally, the nine parameters chosen are the strain increments at the top, at the bottom and at the
neutral axis, in the mortar and in the glued and the unglued parts of the block:

top Ael? = Ae, — 1 Ay,
bottom At = Ae, +1 Ay,
neutral axis Ae~* = Ae, + Yn. Ay,,

where Yn, = —e./y, and the subscript “«” stands for ‘g’, ‘b’ or ‘m’.
4.4. Algorithm summary

The algorithmic implementation of the iterative procedure relative to the scheme above presented is
briefly reported:
do loop on time history
do while (residuals < tolerance)
initialize quantities
do loop on delamination
masonry beam
loop on the elements in the cross section
loop on the Gauss points
compute total strain &
compute plastic strain &,
compute damage D
compute stress o
compute Né"[, Ny, N and Mg’l, My, M,
add contribution to Ny, and M,
compute algorithmic tangent moduli
add contribution to global tangent
end loop
end loop
reinforcement beam
compute N3, N, and My, M,
add contribution to Ny, and M,
compute reinforcement elastic energy
compute stiffness matrix
add contribution to global tangent
compute residuals
solve system
compute the load increment (arc-length method)
compute new solution e, y
end loop for nonlinear problem
compute release energy rate as finite difference
check delamination
end loop on delamination
check reinforcement failure
increase the time
end loop on time
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5. Numerical applications
Applications are developed for a reinforced masonry element characterized by mortar and block with the

following material properties:
Mortar:

E, =5000 MPa o6y,, =3 MPa K, = 500 MPa
ein=1E—4 ¢ =4E—4 ¢ =10E—-4 ¢ =40E—4.

Block:
Ep = 15,000 MPa ¢y, = 10 MPa K, = 1500 MPa
ey, =1E—4 &, =6E—4 ¢, =I15E—-4 ¢ =60E—4

The masonry geometrical parameters are
L, =25mm, L, =5 mm, b= 130 mm, 2 =250 mm

which correspond to a typical masonry with blocks 50 x 130 x 250 mm?® and mortar layers of 10 mm

width.
In Fig. 4 the stress—strain response for the block, the mortar and the homogenized masonry is plotted.
It can be noted that the response of the masonry is significantly worse than the response of the two
components. In fact, it presents the same tensile and compressive strength of the mortar, which is generally
lower than the strength of the block. Moreover, the masonry behavior is characterized by a steeper soft-
ening branch than the two components. This is due to the fact that when the masonry is subjected to a load
history the deformation localizes in the mortar as it is the weakest component.
A carbon fiber-reinforced plastic composite material with Young’s modulus E. = 200,000 MPa is
considered. Note that, although the strength of the FRP sheets is generally different in traction and in
compression, in the application developed in the following, it is set fi = fx = 2500 MPa. It is assumed

partially glued to the masonry so that L, = 22 mm.

1x10°
0 — S
Teeal y
~ . /
= ) N i
& a0’ P AL
) !
T o /
5 -2x10 !,;XK I
] % 4
Masonry % 7{
*
3X10° ] - Mortar % 2
»»»»»»»»» Block d
% M
-4x10° T
-6.0x10° -4.0x10° -2.0x10° 00 2.0x10°
Strain

Fig. 4. Stress—strain relation for the mortar, the block and the masonry materials.
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5.1. Axial behavior

Initially, the axial response of the reinforced masonry is investigated, neglecting the possible delamin-
ation. In Figs. 5 and 6 the axial force Ny, versus the strain e, is plotted in tension and in compression,
respectively, for different values of the reinforcement area, with Ax = 4§ = 43.

It can be noted that the presence of the reinforcement improves the mechanical response of the masonry.
In fact, the plain masonry is not able to carry any load when the mortar is completely damaged, as rep-
resented in Figs. 5 and 6 for Az = 0 mm?. On the contrary, the reinforcement allows to transfer the external
axial force to the block, also when the mortar is completely damaged. Moreover, the strain localization in
the mortar is reduced by increasing the FRP area, thus the material becomes more ductile, and the soft-
ening branch results less steep.

In Figs. 5 and 6 the analysis is performed until the complete damage of the mortar is reached, thus it
does not describe the whole strength capability of the reinforced masonry. In fact, the analysis can be
carried on until the collapse of the block and of the reinforcement occurs, as shown in Figs. 7 and 8, where
the total axial force N, is plotted versus the strain ey, in tension and in compression, respectively, for
Ar = Ay = Az = 20 mm?.

Note that in the curve represented in Fig. 7, the collapse in tension of the reinforcement, reached for
Niot = fg 24r = 100,000 N occurs when the glued block and the mortar are both completely damaged,
and it corresponds to a value out of the represented scale. On the other hand, the reinforcement failure in
compression occurs for Ny = —fg 24r = —100,000 N when only the mortar is completely damaged, as
shown in Fig. 8. Thus, it can be pointed out that the reinforced masonry tensile response is characterized by
a softening branch and a severe snapback, which occur during the damage and failure of the mortar and of
the glued block, respectively. The compressive response is characterized by a softening branch, representing
the mortar degradation. In Fig. 8, the axial force—strain relation, obtained neglecting the reinforcement
failure, is plotted with a dashed line. Even in this case the snapback occurs during the damage of the glued
block. The unglued part of the block does not undergo any damage during the loading history, as it remains
unloaded, when the mortar is completely damaged.

The collapse load in tension for a reinforced masonry with A = 20 mm? is almost ten times higher than
the collapse load for the plain masonry, represented in Fig. 5 (see case Ag = 0 mm?). On the contrary, the
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Fig. 5. Axial force-strain in tension for different amounts of FRP reinforcement.
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Fig. 6. Axial forcestrain relation in compression for different amounts of FRP reinforcement.
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Fig. 7. Axial forcestrain in tension for 4g = 20 mm?®.

collapse load in compression is almost the same for the reinforced and unreinforced masonry (see Fig. 6 for
Ar = 0 mm?), because of the satisfactory mechanical properties of the mortar and block in compression.

From a computational point of view, it can be emphasized that the procedure developed is able to
describe the complex response of the reinforced masonry characterized by softening and snapbacks. In fact,
the developed arc-length technique demonstrates satisfactory convergence properties.

5.2. Bending behavior

Then, the bending behavior is studied. Initially, the delamination effects are disregarded. In Fig. 9, the
total bending moment M, is plotted versus the curvature y,,, for different amounts of FRP reinforcement,
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Fig. 8. Axial force-strain in compression for 4z = 20 mm?.

during the initial damage of the mortar. As for the axial problem, also for the bending case it is apparent
the beneficial effects of the reinforcement in improving the mechanical response, and in particular the
ductility, of the masonry.

The results of a complete bending analysis, performed taking into account the whole nonlinear behavior
of the mortar and block, are reported in Figs. 9-11.

In particular, in Fig. 10 the bending moment M, is plotted versus the curvature y,, for 4Ar =
Ay = Agx = 20 mm?. The mechanical response of the material is characterized by different severe snapbacks
due to the damage and failure of the mortar and of the block. The curve reported does not show the re-
inforcement failure that occurs when M, = frArh = 12,500,000 Nmm. The collapse bending moment for
a reinforced masonry with 4gx = 20 mm? is more than ten times higher than the collapse load for the plain
masonry, represented in Fig. 9 (see case Ag = 0 mm?).
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Fig. 9. Bending moment—curvature relation for different amounts of FRP reinforcement.
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Fig. 11. Axial strain—curvature relation for the bending load history with 4z = 20 mm?.

In Fig. 11, the axial strain is plotted versus the curvature for the bending load history. It can be pointed
out that even for a monotonic bending load the axial strain is different from zero because of the damage and
the plastic processes that occur in the masonry. In Fig. 12, the neutral axes in the glued block Yn, = —e,/7,,
in the unglued block Yn, = —ey/y,, in the mortar Yn, = —en/y, and the overall neutral axis Yn =
—erot/ 1ior are plotted versus time. Some considerations can be made. At the beginning of the analysis, the
mortar starts to damage in tension, so the neutral axis Yn,, tends to move towards the top of the section,
reducing the are in compression. This effect produces an extension of the mortar which is constrained by the
presence of the reinforcement; thus a compression state in the close unglued block is induced. As a con-
sequence, the axis Yn, tends towards the bottom of the section as the unglued block still behaves elastically.
When the mortar reaches the complete damage, Yn,, goes back to zero and Yn, suddenly drops to zero, too.
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Fig. 12. Position of the neutral axes versus time for the bending load history with 4x = 20 mm?.

The neutral axis Yn, starts to move from the section center later than Yn,, and Yn, when the glued block
begins to damage. The position Yn, of the overall axis is influenced by the movements of Yay,, Yn, and Y,
and, at the end of the analysis, it tends to zero since only the reinforcement remains undamaged.

5.3. Delamination

Two different values of the critical energy release rate governing the delamination phenomenon are
assumed G, = 0.002-0.04 N/mm; these values correspond to possible critical energies for the block in mode
II. In Fig. 13, the axial force N, is plotted versus the strain e, in compression using lines for different fixed
values of the glued length L, of the reinforcement. In the same figure, the axial force—strain relation, which
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Fig. 13. Delamination process in compression.
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Fig. 14. Delamination process in bending.

takes into account the delamination process, is represented with a thick line. The delamination occurs
during the mortar damage, when the block still behaves elastically.

In Fig. 14, the bending moment M, is plotted versus the curvature y,, for different fixed values of L,
with thin lines, while the two curves with thick lines represent the material response taking into account the
delamination process for two different values of the fracture energy G.. It can be pointed out the signifi-
cative influence of the delamination effects on the mechanical response of the reinforced masonry. Of
course, it results that for higher values of the fracture energy the delamination occurs later.

6. Conclusion

A one-dimensional elasto-plastic damage model for the reinforced masonry is proposed. In particular, a
homogenization technique is adopted in order to evaluate the overall behavior of the reinforced masonry
accounting for

the damage in traction of the block and the mortar,

the damage and plasticity in compression of the block and the mortar,
the brittle failure of the reinforcement,

the delamination process of the FRP from the masonry.

The results obtained show the beneficial effects of the presence of the reinforcement on the overall re-
sponse especially when the masonry is subjected to tension and to bending. Hence, it can be deduced that
the reinforcement of the masonry should be designed in order to work in tension, i.e. when the masonry is
subjected to traction or bending loading. Computations demonstrates that the delamination phenomenon
affects significantly the reinforced material behavior, reducing the mechanical properties. For this reason it
is very important to account for it. Furthermore, it should be noted that, when the masonry is in com-
pression and delamination is present, the FRP could lose any loading capability, because of the instability
effects of the reinforcement.

The response of the material for any loading history appears complex as it is characterized by steep
softening branches and by severe snapbacks. The proposed numerical procedure, based on the arc-length



S. Marfia, E. Sacco | International Journal of Solids and Structures 38 (2001) 4177-4198 4197

technique, is able to describe the complex behavior of the reinforced masonry, by means of an accurate
choice of the control parameters. The developed analyses show good converge properties of the algorithm
also in correspondence of softening and snapback branches.

The presented one-dimensional micromechanical analysis allows one to derive simple but fundamental
considerations on the overall response of a reinforced masonry beam and moreover it gives some hints for
developing two- or three-dimensional macromechanical models for reinforced walls.

Aim of the future development of the research is to perform micromechanical laboratory tests on the
reinforced masonry and to compare the experimental results with the numerical ones which can be obtained
adopting the proposed model.
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